Nuclear Sciences and Applications

course ID





14 Weeks

Semester DD


Course details

Energy and human development. Nuclear Energy: Fission and Fusion. Fissile materials and fission chain reactions. Principles of operation of a Fission Reactor: PWR and BWR. CANDU reactors with natural Uranium and Heavy water. Breeder reactors and the SuperPhoenix. Energy from Fusion. Basic conditions for a Fusion Reactor. Magnetic and Inertial confinement. The problem of Tritium supply. The Energy Amplifier. The military applications of Nuclear Energy. Nuclear Magnetic Resonance, NMR: Nuclear Magnetization and radio frequency transistions. Nuclear relaxation. Magnetic Resonance Imaging, MRI, and its applications in medicine: excitations of the proton spin flips and detection of the de-excitation signals. Different imaging techniques. Radio-Carbon dating. Calibration techniques for Radio-Carbon data. Detection of the radioactive decay of Carbon 14 and Accelerator Mass Spectrometry. Hadron Therapy for cancer treatment. The effect of ionizing radiation on human tissues. Protons and Heavy Ions vs X-rays. Standard Techniques to optimize the damage to sick tissues while minimizing collateral damage to nearby organs. The production of gamma-ray beams: Bremsstrahlung, Coherent Bremsstrahlung, Positron annihilation, Compton scattering in flight.

Co-teaching: Dott. Pierpaolo Antonio