CFU
6
Length
14 Weeks
Semester DD
Second
Many-Body theory. Second quantization. Green’s function. Feynman diagrams, Dyson equation. Self Energy. Homogeneus electron gas. Correlation energy. Linear response theory. Density Functional Theory. Electronic band structures. Optical properties. Excitons. Time Dependent Density Functional Theory. Numerical methods.
LEARNING OUTCOMES:
The course is aimed at completing basic training in the field of quantum physics applied to the study of microscopic and macroscopic properties of materials.
The goal of the course is to provide the main knowledge on theoretical / computational methods for the study of the structural, electronic and optical properties of materials.
The main educational objectives are the understanding of quantum-mechanical semi-empirical and first-principles methods, such as the Density Functional Theory (DFT), the time-dependent Functional density theory and the Green Function theory.
Another objective is the learning and autonomous use of one of the main DFT (quantum-express) calculation codes currently in use in the field of research in Solid State Physics through the performance of practical exercises by the student.
KNOWLEDGE AND UNDERSTANDING:
The course aims to provide the student with the basic tools needed to understand the structural and opto-electronic properties of materials in terms of a microscopic quantum-mechanical description.
The lessons focus on the mathematical derivation and physical interpretation of the main theoretical investigation tools for the study of the structural, electronic and spectroscopic properties of materials.
Applications relating to materials of current interest in the field of Physics of Matter research are illustrated during lectures and computer-based simulations in order to broaden the student's knowledge about the state of the art in this field.
APPLYING KNOWLEDGE AND UNDERSTANDING:
The course aims to provide mathematical-physical tools that allow students to understand scientific manuscripts dedicated to the study of materials and to analyze, through their knowledge, various experimental physical observables of interest in materials science. The student must also be able to identify and understand the theoretical / computational method suitable for the characterization of the chemical-physical properties of the material of interest and to be able to understand, analysis, discussions and data derived by these methods.
The student will also be able to tackle new scientific problems and to read scientific texts and articles in English on topics related to the study of electronic structural and optical properties of materials.
MAKING JUDGEMENTS:
Students are required to use the acquired knowledge in a critical manner, specifically to study the structural, electronic and optical properties of matter in order to evaluate their characteristics for an appropriate use in the field of Solid State Physics.
COMMUNICATION SKILLS:
Particular attention is paid to the ability to use the knowledge acquired during the lessons appropriately and in a conceptually coherent and rigorous context. The final report related to the computer simulations carried out by the student on a specific material, is foreseen through a seminar-type power-point presentation by the same, and has the purpose of exercising and improving communication skills and transversal skills of the student .
LEARNING SKILLS:
Particular attention is paid to the ability to use the knowledge acquired during the lessons appropriately and in a conceptually coherent and rigorous context.
The final report related to the computer exercise carried out by the student on a specific material, is foreseen through a seminar-type power-point presentation and has the purpose of exercising and improving his/her communication skills and transversal skills .