Vasil Saroka

Marie-Curie Postdoctoral Fellow
Principal Researcher in TeraExc-101065500-HORIZON-MSCA-2021-PF-01
International research visits
    • University of Southampton, School of Physics and Astronomy, Laboratory for Hybrid Optoelectronics: 01/08/2011-30/09/2011 – project ”Engineering nonlinearities in organic semiconductor microcavities”, supervisor: Prof. Pavlos Lagoudakis; [funded by IAESTE UK].

    • Emanuel Institute of Biochemical Physics, Russian Academy of Science: 01/10-30/11/2013 – project “Modeling of the structure and properties of asymmetrical edge-corrugated graphene nanoribbons”, supervisor Prof. Leonid Chernozatonskii; [funded by Russian Foundation for Basic Research grant “РФФИ № 13-02-90919”].

    • University of Namur: 02/06/-30/06/2014 – project “Electromagnetic properties of graphene”, supervisor Prof. Philippe Lambin; [funded by EU FP7 project FAEMCAR (FP7-318617)].

    • University of Picardy Jules Verne: 03-04/2015 – project “Optical properties of silicene and bilayer graphene nanoclusters”, supervisor Prof. Igor Lukyanchuk; [funded by EU FP7 ITN NOTEDEV (FP7-607521)].

    • University of Iceland: 04/2017 – project “Brightening of the excitonic ground state in carbon nanotubes in the strong light-matter coupling regime”, supervisor Prof. Ivan Shelykh; [funded by EU FP7 ITN NOTEDEV (FP7-607521)].

    • University of Rome Tor Vergata: 04-05/2018 – project “Optical properties of finite-length chevron-type graphene nannoribbons”, supervisor Prof. Olivia Pulci; [funded by EU H2020 RISE COEXAN (H2020-644076)].

    • MBN Research Center: 02/07-02/08/2018 – project “Multiscale modeling of carbon nanostructures with MBN Explorer and MBN Studio 3.0”, supervisor Prof. Andrey V. Solov'yov; [funded by EU H2020 RISE PEARL, (H2020-690991)].

    • Research Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus: 01/02/2010-30/06/2011 – Laboratorian; 17/07/2011–31/07/2012 – Engineer; 01/08/2012–31/03/2014 – Junior Research Assistant; 01/04/2014 – 31/01/2018 - Junior Researcher; 01/02/2018–20/11/2018 - Researcher.

    • Private Trade and Production Enterprise «ММ софт-троник», Minsk, Belarus: 18/10/2011–1/04/2012 – Math and Physics content developer.

    • University of Exeter, College of Engineering, Mathematical and Physical Sciences, Exeter, UK: 04/08/2014–03/08/2017 – Early Stage Researcher

    • Norwegian University of Science and Technology, Faculty of Natural Sciences, Department of Physics, Trondheim, Norway: 28/11/2018–28/11/2021 – Post Doctoral Researcher.

    • University of Rome Tor Vergata, School of Mathematics, Physics and Natural Science, Department of Physics, Rome, Italy: 01/02/2023–present

    • Belarusian State University, Physics Department, Minsk, Belarus: 02-05/2013 – Labs in Nuclear Physics.

    • Norwegian University of Science and Technology, Department of Physics, Trondheim, Norway: Spring semester 2020 – Lecturer in Nanophysics course (Quantum Hall effect).

    • Norwegian University of Science and Technology, Department of Physics, Trondheim, Norway: Spring semester 2021 – Lecturer assistant in Nanophysics (Reading tasks: i. single-electron charge pump; ii. quantum Hall effect in graphene)

Supervision of master and doctoral students
    • University of Exeter, College of Engineering, Mathematical and Physical Sciences, Exeter, UK: 06/2015-06/2017 – Master Thesis: Robert Keens, co-supervision with Prof. M.E. Portnoi.

    • Norwegian University of Science and Technology, Faculty of Natural Sciences, Department of Physics, Trondheim, Norway: 12/2018-05/2019 – Master Thesis: Ola Neilsen Estensen, co-supervision with Prof. J.Danon.

    • De La Salle University, College of Science, Physics Department, Manila, Philippines: 21/11/2018-18/09/2020 – PhD Thesis: Renebeth B. Payod “Alignment of absorption resonances of single-walled carbon nanotubes and graphene nanoribbons”, co-adviser with Prof. Gil Nonato C. Santos.

Development of higher educational courses
    • PHY3062 Methods of Theoretical Physics read by Prof M.E. Portnoi: 06-09/2016 Didactic materials on Transfer Matrix Method for the University of Exeter course.[pdf]


  1. V. A. Saroka, R. R. Hartmann, and M. E. Portnoi, “Momentum alignment and the optical valley Hall effect in low-dimensional Dirac materials”, JETP 135, 513 (2022).
  2. H. Abdelsalam, V. A. Saroka, M. M. Atta, O. H. Abd-Elkader, N. S. Zaghloul and Q. Zhang, “Tunable sensing and transport properties of doped hexagonal boron nitride quantum dots for efficient gas sensors”, Crystals 12, 1684 (2022). Open Access
  3. M. A. Saad, M. A. S. Sakr, V. A. Saroka, and H. Abdelsalam, “Chemically modified covalent organic frameworks for a healthy and sustainable environment: First-principles study”, Chemosphere 308, 136581 (2022).
  4. H. Abdelsalam, M. M. Atta, V. A. Saroka, and Q. Zhang, “Anomalous magnetic and transport properties of laterally connected graphene quantum dots”, J. Mater. Sci. 57, 14356 (2022).
  5. C. A. Downing and V. A. Saroka, “Exceptional points in oligomer chains”, Commun. Phys. 4, 254 (2021).
  6. H. Abdelsalam, V. A. Saroka, M. M. Atta, W. Osman, and Q. Zhang, “Tunable electro-optical properties of doped chiral graphene nanoribbons”, Chem. Phys. 544, 111116 (2021).
  7. H. Abdelsalam, V. A. Saroka, N. H. Teleb, M. Ali, W. Osman, and Q. Zhang, “Electronic and adsorption properties of extended chevron and cove-edged graphene nanoribbons”, Physica E 126, 114438 (2021).
  8. R. B. Payod, D. Grassano, G. N. C. Santos, D. I. Levshov, O. Pulci, and V. A. Saroka, “2N+4-rule and an atlas of bulk optical resonances of zigzag graphene nanoribbons”, Nat. Commun. 11, 82 (2020). Open Access
  9. V. A. Demin, A. A. Artyukh, V. A. Saroka, and L. A. Chernozatonskii, “Study of a new type of crimped-shape nanotubes cut from bilayer graphene with the Moiré angle Θ = 27.8°”, JETP Lett. 111, 397 (2020). Editorial Pick
  10. H. Abdelsalam, W. O. Younis, V. A. Saroka, N. H. Teleb, S. Yunoki, and Q. Zhang, “Interaction of hydrated metals with chemically modified hexagonal boron nitride quantum dots: wastewater treatment and water splitting”, Phys. Chem. Chem. Phys. 22, 2566 (2020).
  11. R. B. Payod and V. A. Saroka, “Ab initio study of absorption resonance correlations between nanotubes and nanoribbons of graphene and hexagonal boron nitride”, Semiconductors 53, 1929 (2019).
  12. R. R. Hartmann, V. A. Saroka, M. E. Portnoi, “Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons”, J. Appl. Phys. 125, 151607 (2019). Editorial Pick
  13. H. Abdelsalam, V. A. Saroka, W. O. Younis, “Edge functionalization of finite graphene nanoribbon superlattices”, Superlattices Microstruct. 129, 54 (2019).
  14. V. A. Shahnazaryan, V. A. Saroka, I. A. Shelykh, W. L. Barnes, M. E. Portnoi, “Strong light-matter coupling in carbon nanotubes as a route to exciton brightening”, ACS Photonics 6, 904 (2019).
  15. H. Abdelsalam, V. A. Saroka, M. Ali, N. H. Teleb, H. Elhaes, M. A. Ibrahim, “Stability and electronic properties of edge functionalized silicene quantum dots: A first principles study”, Physica E 108, 339 (2019).
  16. H. Abdelsalam, V. A. Saroka, and W. O. Younis, “Phosphorene quantum dot electronic properties and gas sensing”, Physica E 107, 105 (2019).
  17. V. A. Saroka, H. Abdelsalam, V. A. Demin, D. Grassano, S. A. Kuten, A. L. Pushkarchuk, and O. Pulci, “Absorption in finite-length chevron-type graphene nanoribbons”, Semiconductors 52, 1890 (2018).
  18. H. Abdelsalam, V. A. Saroka, I. Lukyanchuk, and M. E. Portnoi, “Multilayer phosphorene quantum dots in an electric field: Energy levels and optical absorption”, J. Appl. Phys. 124, 124303 (2018).
  19. V. A. Saroka, A. L. Pushkarchuk, S. A. Kuten, and M. E. Portnoi, “Hidden correlation between absorption peaks in achiral carbon nanotubes and nanoribbons”, J. Saudi Chem. Soc. 22, 985 (2018). Open Access
  20. T. P. Collier, V. A. Saroka, and M. E. Portnoi, “Tuning terahertz transitions in a double-gated quantum ring”, Phys. Rev. B 96, 235430 (2017).
  21. V. A. Saroka, I. Luckyanchuk, M. E. Portnoi and H. Abdelsalam,“Electro-optical properties of phoshorene quantum dots”, Phys. Rev. B 96, 085436 (2017).
  22. V. A. Saroka, M. V. Shuba and M. E. Portnoi, “Optical selection rules of zigzag graphene nanoribbons", Phys. Rev. B 95, 155438 (2017).
  23. V. A. Saroka and K. G. Batrakov, “Zigzag-shaped superlattices on the basis of graphene nanoribbons: structure and electronic properties”, Russ. Phys. J. 59(5), 633 (2016).
  24. H. Abdelsalam, M. H. Talaat, I. Lukyanchuk, M. E. Portnoi, and V. A. Saroka, “Electro-absorption ofsilicene and bilayer graphene quantum dots”, J. Appl. Phys. 120, 014304 (2016).
  25. V. A. Saroka, K. G. Batrakov, V. A. Demin, and L. A. Chernozatonskii, “Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field”, J. Phys.: Condens. Matter 27, 145305 (2015).
  26. V. A. Saroka, K. G. Batrakov, and L. A. Chernozatonskii, “Edge-modified zigzag-shaped graphene nanoribbons: Structure and electronic properties”, Phys. Solid State 56, 2135 (2014).
  27. Konstantin G. Batrakov, Vasily A. Saroka, Sergey A. Maksimenko, Christian Thomsen, “Plasmon polariton deceleration in graphene structures”, J. Nanophoton. 6, 061719 (2012).

Book chapters:

  1. T.P.Collier, V.A.Saroka, C.A.Downing, A.M.Alexeev, R.R.Hartmann, and M.E.Portnoi (2019) Terahertz Applications of Non-Simply-Connected and Helical Nanostructures. In: A.Maffucci and S.A.Maksimenko (eds) Fundamental and Applied Nano-Electromagnetics II, NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. Chapter 11, pp. 201-214.
  2. V.A. Saroka, R.R. Hartmann, M.E. Portnoi (2019) Interband transitions in narrow-gap carbon nanotubes and graphene nanoribbons. In: A. Maffucci, S.A. Maksimenko, Yu. Svirko (eds) Carbon-Based Nanoelectromagnetics. Nanophotonics Series. Elsevier, Amsterdam. Chapter 4, pp. 99-117.
  3. K. Batrakov, V. Saroka (2013) Surface Plasmon Retardation in Graphene Bilayer. In: Fesenko O., Yatsenko L., Brodin M. (eds) Nanomaterials Imaging Techniques, Surface Studies, and Applications. Springer Proceedings in Physics, vol 146. Springer, New York, NY. Chapter 9, pp. 103-115.
Teaching in the Physics Department
ID Course Name Semester Length CFU